

Basics of propositional logic

Classical inference rules

$f = f(\Sigma)$	propositional language f over a set of atoms Σ	Modus ponens	$A \Rightarrow B, A$
$\sim \sim (2)$	junctors for negation conjunction disjunction		B
$A \Rightarrow B$	$\equiv \neg A \lor B$ material implication	Modus tollens	$A \Rightarrow B, \neg B$
Ω	set of interpretations/models/possible worlds over Σ		$\neg A$
$\omega \models A$	ω is a model of $A(\in \mathcal{L})$	Monotony	$A \Rightarrow B$
Mod(A)	set of models of A		$A \land C \Rightarrow B$
$A \models B$	iff $Mod(A) \subseteq Mod(B)$ classical deduction	Transitivity	$A \Rightarrow B$
Cn(A)	$= \{B \in \mathcal{L} \mid A \models B\}$ classical consequence operator		$B \Rightarrow C$
(-)			$A \Rightarrow \overline{C}$

	5 / 148		e	j / 148
The right logic? Failures of classical inference		The right logic?	Failures of classical inference	
Classical properties/axioms: Contraposition		Classical properties/axioms: 7	Fransitivity	

$Penguin \models Bird$	Penguins are birds.	
$\neg Bird \models \neg Pengui$	n Non-birds are non-penguins. :)	
$Human_being$ \sim	$\neg Millionaire$	
Hu	mans usually are not millionnaires.	
$Millionaire$ \sim	\neg Human_being	
Mil	lionnaires usually are not human. :(

$Penguin \models Bird$	Penguins are birds.	
$Bird \models Animal$	Birds are animals.	
$Penguin \models Animal$	Penguins are animals.	:)
$Penguin \sim Bird$	Penguins are birds.	
$Bird \sim Fly$	Birds can fly.	
$Penguin \sim Fly$	Penguins can fly. :(

Classical properties/axioms: Monotony

From $A \models C$ conclude $A \land B \models C$

$Penguin \models Bird$	Penguins are birds.
$Penguin \land Black \models Bird$	Black penguins are birds. :)
$Bird \sim Fly$	Birds can fly.
$Bird \wedge Penguin \sim Fly$	Pegnguin-birds can fly. :(

From the common sense perspective, classical logic is inadequate, now let's have a look on the cognitive perspective ...

Section 2

Cognitive perspective

Cognitive perspective

Talk Overview

Cognitive perspective

- Four cards with a letter on one and a number on the other side
- A rule: If there is a vowel on one side there is an even number on the other side
- Decide:
 - Exactly which cards needs to be turned in order to check that the rule holds?

Observation 1': The Deontic Case [3]

Again 4 cards; on one side person's age/backside drink.

If a person is drinking beer, then the person must be over 19 years of age.

Which cards must be turned to prove that the conditional holds?

- Isomorphic to the previous problem. But, most get it right!
- Observations:
 - Humans can reason classically logically, but not always
 - Even for isomorpic problems human reasoning is not equivalent

Cognitive perspective Characteristics of human cognition

13 / 148

Observation 2a: Belief Bias [5]

All frenchmen drink wine Some wine drinkers are gourmets Some frenchmen are gourmets

Although the argument is widely accepted, it is not valid!

All frenchmen drink wine Some wine drinkers are italians Some frenchmen are italians

• Belief (in conclusion) Bias Effect!

Meta-analysis of WST [17]

- Pubmed, Science Direct, or Google Scholar search with keywords: (conditional reasoning) or (selection task) or (Wason card)
- Inclusion of studies that report
 - Rules: if p, then q; every p
 - Individual selection patterns (No aggregation!)
 - At least the four canonical selections: $p,~pq,~p\bar{q},~pq\bar{q}$ per Ss
- Inclusion of 228 experiments with N = 18,000 Ss:
 - Abstract: 104 exp; Everyday: 44 exp; Deontic: 80 exp
- Aggregated results for the canonical selections in %

	p	pq	$pq\bar{q}$	$p\bar{q}$
Abstract	36	39	5	19
Everyday	23	37	11	29
Deontic	13	19	4	64

• Data can be found here: [17] and https://www.cc.uni-freiburg.de/data/14/148

Cognitive perspective Characteristics of human cognition

Observation 2: Belief Bias - Meta-Analysis

Conclusion	Syllogism		
	Believable	Unbelievable	
Valid	No cigarettes are inexpensive.	No addictive things are inex-	
		pensive.	
	Some addictive things are in-	Some cigarettes are inexpen-	
	expensive.	sive.	
	Therefore, some addictive	Therefore, some cigarettes are	
	things are not cigarettes.	not addictive.	
	P("valid") = .92	P("valid") = .46	
Invalid	No addictive things are inex-	No cigarettes are inexpensive.	
	pensive.		
	Some cigarettes are inexpen-	Some addictive things are in-	
	sive.	expensive.	
	Therefore, some addictive	Therefore, some cigarettes are	
	things are not cigarettes.	not addictive.	
	P("valid") = .92	P("valid") = .08	

Example and numbers taken from [19].

Observation 2: Belief Bias – Meta-Analysis [19]

THE ACCOUNT BY MENTAL MODELS

- Can be explained by
 - Background knowledge
 - Erroneously reasoning about consistency instead of deductive reasoning
 - Humans focusing on the conclusion instead on the reasoning process

Picture taken from [12].

• Data can be found here: https://osf.io/8dfyv/

17 / 148

Cognitive perspective Characteristics of human cognition

Observation 3: Nonmonotonicity

- If Lisa has an essay to write, Lisa will study late in the library
- If the library is open, Lisa will study late in the library
- Lisa an essay to write
 - Lisa will study late in the library
 - Nothing follows
 - Can't say or I have another solution

Observation 2b: Knowledge frame [20]

Linda is 31 Jahre old, single, outspoken and very intelligent. As a student she concerned herself thoroughly with subjects of discrimination and social justice and participated in protest against nuclear energy.

Rank the following statements by their probabilities.

- Linda works as a bank teller.
- Linda works as a bank teller and is an active feminist.
- Result: More than 80% judge Linda works as a bank teller and is an active feminist to be more likely than Linda works as a bank teller.
- BUT: $p(a \land b) \leq p(a)$ or p(b)
- Hence, most answer falsely from the perspective of probability!
- Instead humans use the so called representativity heuristic.

18 / 148

Cognitive perspective Characteristics of human cognition

The Suppression Task [2]

- If she has an essay to write, she will study late in the library.
- If the library is open, she will study late in the library.
- She has an essay to write.

95% of all subjects conclude (modus ponens): Only 60% of all subjects conclude:

• She will study late in the library.

A logic is called non-monotonic if the set of (logical) conclusions from a knowledge base is not necessarily preserved when new information is added to the knowledge base.

• Everyday reasoning is often non-monotonic [18, 9]

Suppression Task

Facts Conditional		Alternative Argument	Additional Argument
	If she has an essay to	If she has a textbook to	If the library stays
	finish, then she will	read, then she will	open, then she will
	stay late in the library	stay late in the library	stay late in the library
She has	She will study late	She will study late	She will study late
an essay	in the library	in the library	in the library
to finish	(96% L)	(96% L)	(38% <i>L</i>)
She does not	She will not study	She will not study	She will not study
have an essay	late in the library	late in the library	late in the library
to finish	$(46\% \neg L)$	$(4\% \ \neg L)$	$(63\% \neg L)$

Additional arguments lead to the suppression of previously drawn conclusions.

Alternative Arguments lead to the suppression of previously drawn conclusions.

Suppression Task: Classical Logic

If she has an essay to finish	then she will stay late in the library	$l \leftarrow e$
If she has a textbook to read	then she will stay late in the library	$l \leftarrow t$
If the library stays open	then she will stay late in the library	$l \leftarrow o$

Clauses	Facts	Classical Logic	Exp. Findings	
$l \leftarrow e$	e	$\models l$	96% L	Modus Ponens
$l \leftarrow e l \leftarrow t$	e	$\models l$	96% L	Modus Ponens
$l \leftarrow e l \leftarrow o$	e	$\models l$	38% L	Modus Ponens
$l \leftarrow e$	$\neg e$	$\not\models \neg l$	$46\% \ \neg L$	Denial of the Antecedent
$l \leftarrow e l \leftarrow t$	$\neg e$	$\not\models \neg l$	$4\% \neg L$	Denial of the Antecedent
$l \leftarrow e l \leftarrow o$	$\neg e$	$\not\models \neg l$	$63\% \ \neg L$	Denial of the Antecedent

Classical logic does not adequately represent the suppression task.

22 / 148

21 / 148

```
Cognitive perspective Dependency of inference patterns
```

RQ 1: Are card selections (inference rules) cognitively dependent or independent?

- Some studies reported only percentage of selections for the 4 cards
- Caveat: Requires that selection of a card is independent from others
 - Some analysis report independence [4]
 - But other analysis correlations between pairs of selections [15, 13]
- Who is right ... and how can we test this?
- Idea: Combine Shanon's measure of entropy with simulations of thousands of experiments
 - Entropy is a measure of unpredictability of the state (0 = certain)

$$H = -\sum p_i \log_2 p_i$$

• If H(card selections in experiment) reliably smaller as H(card selections in simulations) then card selection in experiment are dependent

Cognitive perspective Dependency of inference patterns

Entropy of the 228 experiments and 10K simulations

Data: Exp. with no. of Ss and frequencies of the four selections **Result:** Proportion of experiments with lower/higher entropy **foreach** *experiment* **do**

Compute(N, percentage, probs of selection for each of the 4 cards) Compute(Shanon's entropy H for the experiment)

Simulate(10K experiments based on the probs of selecting each card) end

Three sorts of	Mean entropy	Mean entropy of	Wilcoxon's W
selection task	of experiments	10K simulations	and p-value
Abstract	1.32	1.42	W = 469, p < .001
Everyday	1.51	1.66	W = 28, p <.001
Deontic	1.06	1.21	W = 68, p <.001

• Independence of card selections by Ss can be rejected!

Independence assumption of theories

RQ 2: Insufficiency of two-valued interpretation

	Rule Number	Name	Premises	Conclusion	Logically correct?
	1	MP	$p \rightarrow q, p$	q	Yes
 Independence of card selections by Ss can be rejected! 	2	DA	$p \to q, \overline{p}$	\overline{q}	No
 Theories assuming independence are built on false assumptions! 	3	AC	$p \rightarrow q, q$	p	No
 (Eliminates 13 existing cognitive theories) 	4	MT	$p \to q, \overline{q}$	\overline{p}	Yes

Figure: Inference rules and abbreviations: MP: Modus Ponens, DA: Denial of Antecedent, AC: Affirmation of Consequence, MT: Modus Tollens.

- Often focused on aggregated responses for each card
- Instead each individual answer pattern is more sensible
- Overall there can be 2^4 distinct answer patterns
- Conducted meta-analysis (43 Exp) for individual patterns

• How often is MP + MT + AC chosen in each study? \rightarrow And replicable by any two-valued valuation?

Meta-Analysis of Wason Selection Task [16]

Cognitive perspe

Example [16]

Six patterns in the meta-analysis of 46 articles. Ss = number of participants. All other values are percentages chosen by the participants

Publication	Ss	MP	MP + MT	MP + AC	MP + MT + AC	MP + AC + DA	All	Otl
		p	p, \overline{q}	p,q	p,q,\overline{q}	p,q,\overline{p}	$p,q,\overline{p},\overline{q}$	
Social								
[3]	32	44	9	31	9	0	0	
[8]	50	6	82	2	6	0	0	
[22]	40	0	65	3	25	0	0	1
[22]	40	0	45	18	8	0	0	1
[7]	60	27	17	23	10	0	0	2
[6]	25	16	16	36	12	0	0	2
Total	247	15	42	17	11	0	0	1
Abstract								
[10]	128	33	4	46	7	0	0	1
[14]	12	33	33	25	8	0	0	
[23]	320	19	36	13	6	2	8	1
[8]	50	28	0	52	6	0	0	1
[1]	16	13	25	25	19	0	6	(
[11]	89	13	19	24	9	2	13	1
[18]	n/a	35	5	45	7	n/a	n/a	1
Total	615	18	13	40	7	1	2	1

Two-valued valuations [16]

- Each statement is mapped to 1 (true) or 0 (false)
- Idea: Search through the space of all possible valuations to explain the 2^4 reasoning patterns, especially if chosen
- We use valuations of the form $p\to_\chi q$ where index χ denotes the pattern that follows from the valuation of \to_χ
- Patterns indicate a different inference process, i.e., the 16 patterns are unique
 - $\bullet\,$ E.g., ${\rm MP}\,+{\rm AC}$ does not correspond to ${\rm MP},$ since in the latter AC is not chosen

		29 / 148				30 / 148
ctive	Insufficiency of two-valued interpretation			Cognitive perspective	Insufficiency of two-valued interpretation	
			Example [16]			

Table: n/a means that this is not relevant when evaluating the implication

р	q	$p \rightarrow q$	$p \rightarrow_{MP} q$	$p \rightarrow_{AC} q$
	\perp	Т	n/a	n/a
	Т	Т	n/a	\perp
Т	\perp	1	1	n/a
Т	Т	Т	Т	Т

Table: n/a means that this is not relevant when evaluating the implication

р	q	$p \rightarrow q$	$p \rightarrow_{MP} q$	$p \rightarrow_{AC} q$
\perp	\perp	Т	n/a	n/a
	Т	Т	n/a	\perp
Т		\perp	\perp	n/a
Т	Т	Т	Т	Т

Valuations

$$\begin{split} v(p \to_{\mathsf{MP}} q) &= \begin{cases} 0 & \text{if } v(p) = 1 \text{ and } v(q) = 0\\ 1 & \text{if } v(p) = v(q) = 1\\ 0/1 & \text{otherwise} \end{cases} \\ v(p \to_{\mathsf{MT}} q) &= \begin{cases} 0 & \text{if } v(p) = 1 \text{ and } v(q) = 0\\ 1 & \text{if } v(p) = v(q) = 0\\ 0/1 & \text{otherwise} \end{cases} \\ v(p \to_{\mathsf{AC}} q) &= \begin{cases} 0 & \text{if } v(q) = 1 \text{ and } v(p) = 0\\ 1 & \text{if } v(p) = v(q) = 1\\ 0/1 & \text{otherwise} \end{cases} \\ v(p \to_{\mathsf{DA}} q) &= \begin{cases} 0 & \text{if } v(q) = 0 \text{ and } v(p) = 1\\ 1 & \text{if } v(p) = v(q) = 0\\ 0/1 & \text{otherwise} \end{cases} \end{split}$$

Cognitive perspective Insufficiency of two-valued interpretation

Example [16]

Table: The pattern MP+MT+AC has the same evaluation as the "all four" pattern, which means it also satisfies DA

р	q	MP	MT	AC	MP+MT+AC	All four
	\perp	\top/\bot	Т	\top/\bot	Т	Т
	Т	\top/\bot	\top/\bot		\perp	\perp
Т		\perp	\perp	\top/\bot	\perp	\perp
Т	Т	Т	\top/\bot	Т	Т	Т

33 / 148

Example [16]

Cognitive perspective Insufficiency of two-valued interpretation

Example

Table: The pattern MP + MT + AC has the same evaluation as the "all four" pattern, which means it also satisfies DA

р	q	MP	MT	AC	MP+MT+AC	All four
	\perp	\top/\bot	Τ	\top/\bot	Т	Т
	Т	\top/\bot	\top/\bot	\perp	\perp	\perp
Т	\perp	1	\perp	\top/\bot	\perp	\perp
Т	Т	Т	\top/\bot	Т	Т	Т

Table: The pattern MP+MT+AC has the same evaluation as the "all four" pattern, which means it also satisfies DA

р	q	MP	MT	AC	MP+MT+AC	All four
	\perp	\top/\bot	Т	\top/\bot	Т	Т
	Т	\top/\bot	\top/\bot	\perp	\perp	\perp
Т		1	T	\top/\bot	\perp	1
T	Т	Т	\top/\bot	Т	Т	Т

Consequences [16]

Three-valued logics [16]

Lemma

The relation between the inference rules defined in the table are:

- \rightarrow_{MT+AC} holds if and only if \rightarrow_{MP+DA} holds
- \rightarrow_{MT+AC} implies \rightarrow_{DA}
- \rightarrow_{MP+DA} implies \rightarrow_{AC}
- $\rightarrow_{MT+AC+DA}$ holds if and only if $\rightarrow_{MP+DA+AC}$ holds
- $\rightarrow_{MP+MT+AC}$ holds if and only if $\rightarrow_{MP+MT+DA}$ holds

Corollary

There is no two-valued valuation for the patterns MT + AC, MP + DA, MT + AC + DA, MP + DA + AC, MP + MT + AC, MP + MT + DA

37 / 148

Cognitive perspective Insufficiency of two-valued interpretation

Truth table for three-valued logics

p q ·	→MP	→мт	→ _{MP+MT}	\rightarrow_{AC}	\rightarrow_{DA}
0 0	0/1	1	1	0/1	1
01	0/1	0/1	0/1	0	0
10	0	0	0	0/1	0/1
11	1	0/1	1	1	0/1
0 u	0/1	0/1	0/1	0/1	0
u 0	0/1	0	0	0/1	0/1
u u	0/1	0/1	0/1	0/1	0/1
u 1	0/1	0/1	0/1	0	0/1
1 u	0	0/1	0	0/1	0/1

- Core idea: Assign three values (0, u, 1) to p and q.
- As we model the Wason Selection Task the valuations of the Boolean functions are mapped to the set {0,1} with 1 "turn" and 0 "not turn".
- Alloews for more freedom of interpretation, and allows us to find a uniquely represent all the patterns that were missing under binary logics.
- The lemma does not hold for ternary logics, since there are at least two unique truth tables that satisfy each of the 16 reasoning patterns.

38/148

40 / 148

Cognitive perspective Insufficiency of two-valued interpretation

Formal inference methods

Do formal nonmonotonic inference approaches show this behavior?

- Change of perspective:
 - From: Use formal inference systems as a norm for correct human behavior (→ deviations of human reasoning)
 - To: Use human "commonsense" reasoning to evaluate formal inference methods (→ cognitive-adequacy of formalisms)
- Already known: Logic Programming with weak completion semantics shows suppression effect. [Stenning and Lambalgen, 2008]
- However there are many other approaches, e.g.,
 - System P

• c-Representations

System Z

- c-Representations + Revision
- Reiter Default Logic
 - \Rightarrow See Section 3

Intermediate summary

Classical consequences

Consequence operator of classical logic:

- Instead of analyzing aggregated values, single responses provide the "real" inference process.
- Human reasoners generate patterns that can not be reproduced by classical logic approaches.
- Some answer patterns have implications for other answer patterns.
- Three-valued logics can explain the answer results.

$$Cn : 2^{\mathcal{L}} \to 2^{\mathcal{L}}$$
$$Cn(\mathcal{F}) := \{G \in \mathcal{L} \mid \mathcal{F} \models G\}$$

Cn is monotone, i.e., from $\mathcal{F} \subseteq \mathcal{G}$ we conclude $Cn(\mathcal{F}) \subseteq Cn(\mathcal{G})$ A set of formulas \mathcal{F} is *closed (deductively)* iff $Cn(\mathcal{F}) = \mathcal{F}$.

Deduction theorem relates logical consequence and validity:

$F \models G$ iff	$\models F \Rightarrow G$
-------------------	---------------------------

	41 / 148			42 / 148
Cognitive perspective	Nonmonotonic logics	Cognitive perspective	Nonmonotonic logics	

What is nonmonotonic logic?

In nonmonotonic logics, conclusions don't behave monotonically – if information is added to the knowledge base, it might happen that previous conclusions are given up, like in the famous Tweety example:

Tweety the penguin

Birds fly, penguins are birds, but penguins don't fly

 $bird \sim fly, penguin \wedge bird \sim \neg fly$

Why nonmonotonic logic?

Nonmonotonic reasoning is indispensable for applications dealing with uncertain, incomplete information and should better be termed rational commonsense reasoning:

Nonmonotonic inference

... "is not to add certain knowledge where there is none, but rather to guide the selection of tentatively held beliefs in the hope that fruitful investigations and good guesses will result."

D. McDermott & J. Doyle, Nonmonotonic logic, 1980

The relevance of uncertain reasoning

Many applications today use classical logic or even weaker logics¹, but ...

Certainty is a treacherous illusion!

- Crucial and popular strategies of classical logics do not hold for uncertain reasoning: Modus ponens, contraposition, transitivity/syllogism, monotony, ...
- Inconsistencies and contradictions can not be resolved.

Costly or even disastrous consequences may result from ignoring uncertainty.

¹E.g., for business rules often production rule engines are used.

45 / 148

Cognitive perspective Nonmonotonic logics

Logical consequence vs. (uncertain) human inference

Logical consequence
$$\mathcal{F} \models \mathcal{G}$$
 iff $Mod(\mathcal{F}) \subseteq Mod(\mathcal{G})$ Consequence operator Cn : $2^{\mathcal{L}} \rightarrow 2^{\mathcal{L}}$ $Cn(\mathcal{F}) = \{G \in \mathcal{L} \mid \mathcal{F} \models G\}$ $\mathcal{F} \models \mathcal{G}$ gdw. $\mathcal{G} \subseteq Cn(\mathcal{F})$ Commonsense reasoning \triangleright ?????Inference operator C : $2^{\mathcal{L}} \rightarrow 2^{\mathcal{L}}$ $C(\mathcal{F}) = \{G \in \mathcal{L} \mid \mathcal{F} \models G\}$ $\mathcal{F} \models \mathcal{G}$ gdw. $\mathcal{G} \subseteq C(\mathcal{F})$

A word on Tweety and penguins

The famous Tweety example deals with the important subclass-superclass-problem, like in this (less funny) example:

Example - Cancer

Cancer patients are usually adults. Neuroblastoma is a form of cancer. Lena is suffering from neuroblastoma.

Lena is 1 year old.^a

^aNeuroblastoma occurs (basically) only in children and is here the most frequent cancer disease with solid tumors.

Tweety and penguins – intuitive example that allows immediate approvement or rejection of conclusions by active reasoners (without making them feel unhappy).

Cognitive perspective Nonmonotonic logics

Monotony

 $\mathcal{F} \subseteq \mathcal{H}$ implies $Cn(\mathcal{F}) \subseteq Cn(\mathcal{H})$

- Cn considers all models.
- Also Transitivity and Contraposition are based (in principle) on Monotony.
- Monotony does not allow to revise inferences.

Expect a defeasible inference operation C to be nonmonotonic!

Formal models of commonsense reasoning

Talk Overview

- 1 How human reasoning deviates from classical logic
- 2 Cognitive perspective
- 3 Formal models of commonsense reasoning
- 4 Cognitive aspects of Cognitive Logics
- 5 From nonmonotonic reasoning to belief revision
- 6 Probabilistic belief revision
- 7 References

49 / 148

```
Formal models of commonsense reasoning Basic strategies
```

Basic strategies of (nonmonotonic) commonsense reasoning

Like in classical logic, and although Modus Ponens is invalid in general,

rules

are the main carriers of nonmonotonic inference. However, syntax and/or semantics of rules are different from implications in classical logic.

Basically, two types of rules are used:

- Rules with default assumptions: Reiter's default logic, answer set programming, weak completion semantics
- Defeasible rules: Conditional reasoning, Poole's default logic

Formal models of commonsense reasoning Reiter's default theories

Reiter's default rules

Let φ , ψ_1, \ldots, ψ_n and χ be (classical) formulas.

Reiter default rule $\delta = \frac{\varphi : \psi_1, \dots, \psi_n}{\chi}$ with the reading If φ is known, and ψ_1, \dots, ψ_n can be consistently assumed (i.e., none of $\neg \psi_i$ is known), then conclude χ . $\varphi = pre(\delta)$ Precondition

 $\begin{array}{ll} \varphi = pre(\delta) & \mbox{Precondition} \\ \chi = cons(\delta) & \mbox{Consequence} \\ \{\psi_1, \dots, \psi_n\} = just(\delta) & \mbox{Justifications} \end{array}$

Reiter default theory (W, Δ) : W classical formulas, Δ defaults. Semantics is given by extensions which are minimal sets of classical formulas closed under deduction and default application.

Formal models of commonsense reasoning

Example: Suppression task [Byrne 1989]

In an empirical study [Byrne 1989]

 (α) If she has an essay to write, $(e \rightarrow l)$ then she will study late in the library and (γ) If the library stays open, $(o \rightarrow l)$ she will study late in the library and (δ) She has an essay to write. (e)

only 38% of the participants make a modus ponens inference and conclude that: She will study late in the library. 62% concluded that: She may or may not study late in the library.

Can this be modelled via Reiter?

Reiter and Suppression task [Byrne 1989; Ragni, Eichhorn, Kern-Isberner 2016]

A suitable Reiter default theory for modelling this problem would be

 $T_{supp} = (W_{supp}, \Delta_{supp})$ with $W_{supp} = \{e\}$ and

$$\Delta_{supp} = \left\{ \delta_1 = \frac{e : \overline{\mathsf{ab}_1}}{l}; \ \delta_2 = \frac{l : o}{o}; \ \delta_3 = \frac{\overline{o} : \mathsf{ab}_1}{\mathsf{ab}_1} \right\}$$

where ab_1 is an *abnormality predicate* which expresses that nothing abnormal is known.

53 / 148		54 / 148
	Formal models of commonsense reasoning	Reiter's default theories
[Antoniou 1007]	Process tree: Suppression tas	

Process tree: Suppression task [Ragni, Eichhorn, Kern-Isberner 2016]

 $Cn(\{e, l, o\})$ is the only extension of this theory, i.e., Modus ponens cannot be suppressed.

Formal models of commonsense reasoning Reiter's default theories

Extensions via process trees – definitions [Antoniou 1997]

- δ is applicable to a deductively closed set \mathcal{F} iff $pre(\delta) \in \mathcal{F}$ and $\neg B \notin \mathcal{F}$ for every $B \in just(\delta)$.
- (default) process $\Pi = (\delta_1, ..., \delta_m)$: finite sequence of defaults $\delta_i \in \Delta$ with the two sets

 $In(\Pi) = Cn(W \cup \{cons(\delta) | \delta \in \Pi\})$ $Out(\Pi) = \{\neg A | A \in just(\delta), \delta \in \Pi\}$

such that each δ is applicable to the *In*-set of the foregoing defaults.

- Π is
 - successful iff $In(\Pi) \cap Out(\Pi) = \emptyset$,
 - closed iff every $\delta \in \Delta$ that is applicable to $In(\Pi)$ is an element of Π .
- \mathcal{E} is an extension of (W, D) iff $\mathcal{E} = In(\Pi)$ for a closed and successful process Π .

In logic programming, the (commonsense) implication "if she has an essay to finish, she will study late in the library" should be encoded by the clause

 $l \leftarrow e \land \overline{\mathsf{ab}}_1$

The so-called weak-completion semantics [Hölldobler and Kencana Ramli,

• Replace all clauses with the same head by a disjunction of the body elements, i.e., $A \leftarrow B_1, \ldots, A \leftarrow B_n$ by $A \leftarrow B_1 \lor \ldots \lor B_n$.

Inference relation for default logics

Let (W, Δ) be a default theory.

A classical formula ϕ follows nonmonotonically from W by exploiting Δ ,

 $W \models^{Reiter}_{\Delta} \phi$

if ϕ is contained in all extensions of (W, Δ) .

$$C_{\Delta}^{Reiter}(W) = \{ \phi \mid W \models_{\Delta}^{Reiter} \phi \}$$

is the corresponding inference operator.

In the suppression task example, we have

 $e \vdash^{Reiter}_{\Delta} l,$

so no suppression effect occurs.

57 / 148

Formal models of commonsense reasoning Logic programming and weak completion semantics

Logic Programming: Suppression task [Dietz et al., 2012]

Program	$l \leftarrow e \land \overline{ab}_1$
	$l \leftarrow o \land \overline{ab}_3$
	$ab_1 \leftarrow \overline{o}$
	$ab_3 \leftarrow \overline{e}$
	$e \leftarrow \top$
WCS	$l \leftrightarrow (e \wedge \overline{ab}_1) \vee (o \wedge \overline{ab}_3)$
	$ab_1 \leftrightarrow \overline{o}$
	$ab_3 \leftrightarrow \overline{e}$
	$e \leftrightarrow \top$
Least Model	$(\{e\}, \{ab_3\})$

Weak completion semantics can model the suppression effect.

58/148

Defeasible rules and conditionals

Formal models of commonsense reasoning

2 Replace all occurrences of \leftarrow by \leftrightarrow .

Logic programming

2009] works as follows:

Defeasible rules establish an uncertain, defeasible connection between antecedent A and consequent B of a rule and can be (logically) implemented by conditionals

```
(B|A) – "If A then (usually, probably, plausibly ...) B"
```

Conditionals

- Conditionals encode semantical relationships (plausible inferences) between the antecedent A and the consequent B.
- Conditionals implement nonmonotonic inferences via "(B|A) is accepted iff $A \triangleright B$ holds".
- Conditionals occur in different shapes in many approaches (e.g., as conditional probabilities in Bayesian approaches),
- Conditionals seem to be similar to classical (material) implications "If A then (definitely) B", but are substantially different!

Indeed, many fallacies observed when applying classical logic to uncertain domains are caused by mixing up implications and conditionals!

Conditionals and implications – example

Christmas on the northern hemisphere

- If Christmas were in summer, there would be no snow at Christmas. plausible, approved
- If Christmas were in summer, there would be no Christmas gifts. strange, why?
- If Christmas were in summer, there would be no gravitation. downright nonsense!

All these statements are logically true, when understood as (material) implications (because Christmas is in winter on the northern hemisphere, hence the antecedent is false!).

However, understood as conditionals, crucial differences appear!

What makes conditionals so special?

A conditional (B|A) focusses on cases where the premise A is fulfilled but does not say anything about cases when A does not hold – conditionals go beyond classical logic, as they are three-valued entities.

A conditional leaves more semantical room for modelling acceptance in case its confirmation $A \wedge B$ is more plausible than its refutation $A \wedge \neg B$.

Conditional acceptance and preferential entailment \vdash_{\prec} [Makinson 89]

```
Let \prec be a (well-behaved) relation on models (expressing , e.g., plausibility).
```

(B|A) is accepted iff $A \vdash_{\prec} B$

iff in the most plausible models of A (wrt \prec), B holds also.

 \succ_{\prec} is a semantic-based nonmonotonic inference relation that is encoded by conditionals on the syntax level.

62 / 148

61 / 148

Formal models of commonsense reasoning Ranking functions

Ranking functions and conditionals

 $\begin{array}{ll} \mbox{Ordinal conditional functions (OCF, ranking functions^2) [Spohn 1988]} \\ \kappa:\Omega \to \mathbb{N}(\cup\{\infty\}) & (\Omega \mbox{ set of possible worlds}, \ \kappa^{-1}(0) \neq \varnothing) \\ \kappa(\omega_1) < \kappa(\omega_2) & \omega_1 \mbox{ is more plausible than } \omega_2 \\ \kappa(\omega) = 0 & \omega \mbox{ is maximally plausible} \\ \kappa(A) & := \min\{\kappa(\omega) \mid \omega \models A\} \\ Bel(\kappa) & := \{A \mid \kappa(\neg A) > 0\} \end{array}$

Validating conditionals

 $\kappa \models (B|A) \text{ iff } \kappa(AB) < \kappa(A\overline{B})$

 κ accepts a conditional (B|A) iff its verification AB is more plausible than its falsification $A\overline{B}.$

Formal models of commonsense reasoning Ranking functions

Ranking functions - example

Exampl	e (ranke	d fl	vers)
	- (J J

$\kappa(\omega)=4$	$p\overline{b}f$
$\kappa(\omega)=2$	$pbf p\overline{b} \ \overline{f}$
$\kappa(\omega)=1$	$pb\overline{f} \overline{p}b\overline{f}$
$\kappa(\omega)=0$	$\overline{p}bf \overline{p}\overline{b}f \overline{p}\overline{b}\overline{f}$

$$\begin{aligned} & \textit{Bel}(\kappa) = \textit{Cn}(\overline{p} \left(f \lor \overline{b} \, \overline{f} \, \right) \\ & \kappa(bf) = 0 < 1 = \kappa(b\overline{f} \,) \Longrightarrow \kappa \models (f|b), \\ & \text{but } \kappa(p\overline{f} = 1 < 2 = \kappa(pf) \Longrightarrow \kappa \models (\overline{f} \mid p) \\ & \text{(also } \kappa \models (b|p)) \end{aligned}$$

²Rankings can be understood as qualitative abstractions of probabilities

Verification und falsification of conditionals

Conditionals – example [Goldszmidt & Pearl 1996]

Conditional knowledge base Δ :

r_1 : $(f b)$	birds fly
r_2 : $(b p)$	penguins are birds
r_3 : $(\overline{f} p)$	penguins don't fly
r_4 : $(w b)$	birds have wings
r_5 : $(a f)$	animals that fly are airborne

$\omega \in \Omega$ a possible world, (B|A) a conditional

- ω verifies (B|A) iff $\omega \models AB$;
- ω falsifies (B|A) iff $\omega \models A\overline{B}$;
- ω satisfies (B|A) iff $\omega \models A \Rightarrow B$ (classical counterpart to (B|A)).

Verification implies satisfaction.

$\omega = pb\overline{f}w\overline{a}$

- ω verifies r_2, r_3, r_4 ,
- ω falsifies r_1 ,
- ω satisfies r_2, r_3, r_4, r_5 .

	65 / 148			66 / 148
Formal models of commonsense reasoning	System Z	Formal models of commonsense reasoning	System Z	
Conditionals and tolerance		Tolerance – example		

A conditional knowledge base Δ is consistent iff there is κ such that $\kappa \models \Delta$.

Goal: Finding a simple criterion to decide whether Δ is consistent or not.

(B|A) is tolerated by $\Delta = \{(B_1|A_1), \dots, (B_n|A_n)\}$, if there is $\omega \in \Omega$ such that n

$$\omega \models AB \land \bigwedge_{i=1} (A_i \Rightarrow B_i),$$

i.e., if there is $\omega \in \Omega$ that verifies (B|A) and satisfies all conditionals in Δ .

 $\Delta = \{r_1 : (f|b), r_2 : (b|p), r_3 : (\overline{f}|p), r_4 : (w|b), r_5 : (a|f)\}$ r_1 is tolerated by Δ : E.g.,

$$\omega = \overline{p}bfwa \models bf \land (p \Rightarrow b) \land (p \Rightarrow \overline{f}) \land (b \Rightarrow w) \land (f \Rightarrow a)$$

Likewise, r_4 and r_5 are tolerated by Δ . However, r_2 is not tolerated by Δ because

$$pb \land (b \Rightarrow f) \land (p \Rightarrow \overline{f}) \land (b \Rightarrow w) \land (f \Rightarrow a) \equiv \bot$$

Likewise, r_3 is not tolerated by Δ .

Consistent conditional knowledge bases

Theorem (Adams 1975)

A conditional knowledge Δ is consistent iff each (non-empty) subset $\Delta' \subseteq \Delta$ contains a conditional that is tolerated by Δ' .

This implies

Theorem

 Δ is consistent iff there is a partition $\Delta = (\Delta_0, \Delta_1, \dots, \Delta_k)$ such that each conditional in Δ_i is tolerated by $\cup_{i=i}^k \Delta_j$.

Consistency Test Algorithm [Pearl 1990]

Input : Conditional knowledge base
$$\Delta = \{(B_1|A_1), \dots, (B_n|A_n)\};$$

Output : Partition $\Delta = (\Delta + \Delta - \dots + \Delta_n)$ (as described above)

Output : Partition $\Delta = (\Delta_0, \Delta_1, \dots, \Delta_k)$ (as described above) iff Δ is consistent.

- **1** Set i := 0.
- **2** While $\Delta \neq \emptyset$
 - Find the subset Δ_i consisting of all conditionals in Δ that are tolerated by Δ;
 - **2** if there is no such conditional then **Halt**: Δ is inconsistent;
- **3** Return $\Delta = (\Delta_0, \Delta_1, \dots, \Delta_k)$

Complexity: $O(n^2)$ SAT-tests in 2.1.

$\Delta = \{r_1 : (f|b), r_2 : (b|p), r_3 : (\overline{f}|p), r_4 : (w|b), r_5 : (a|f)\}$

 $\Delta_0=\{r_1,r_4,r_5\} \text{ because } r_1,r_4,r_5 \text{ are tolerated by all conditionals in } \Delta,$ but r_2 and r_3 are not.

 r_2 and r_3 tolerate each other, hence $\Delta_1=\{r_2,r_3\}.$ Therefore, we obtain

$$\Delta = (\Delta_0, \Delta_1)$$

We use the partitioning of $\Delta = \{r_i : (B_i|A_i)\}_{1 \leq i \leq n}$ to define a "best" κ that is a model of Δ :

$$\Delta = (\Delta_0, \Delta_1, \dots, \Delta_k),$$

induces a ranking Z of the conditionals $r_i = (B_i | A_i) \in \Delta$:

$$Z(r_i) = j \quad \text{iff } r_i \in \Delta_j;$$

this gives us the ranking function κ^z defined by

$$\kappa^z(\omega) = \left\{ \begin{array}{ll} 0, \quad \text{if } \omega \text{ does not falsify any conditional in } \Delta \ , \\ \max_{1\leqslant i\leqslant n}\{Z(r_i)\mid \omega\models A_i\overline{B_i}\}+1, \quad \text{otherwise} \end{array} \right.$$

 κ^z imposes penalty points on the worlds for falsifying conditionals.

System Z (cont'd)

Theorem (System Z)

 κ^z is a model of Δ , i.e., $\kappa^z \models \Delta$, and is minimal among all models of Δ , i.e., for all other κ such that $\kappa \models \Delta$, there is at least one $\omega \in \Omega$ with $\kappa(\omega) > \kappa^z(\omega).$

 κ^z implements maximal plausibility among all models of Δ .

Z-inference wrt Δ , \succ_{Δ}^{z} , is defined as follows:

$$A \vdash_{\Delta}^{z} B \quad \text{iff} \quad \kappa^{z}(AB) < \kappa^{z}(A\overline{B})$$

 $\sim \sum_{\Delta}^{z}$ is one of the best existing nonmonotonic inference systems.

System Z – example 1

 $\Delta = \{(f|b), (b|p), (\overline{f}|p)\}$ with the following partitioning:

 $\Delta_0 = \{(f|b)\}, \quad \Delta_1 = \{(b|p), (\overline{f}|p)\},\$

hence Z(f|b) = 0 and $Z(b|p) = Z(\overline{f}|p) = 1$.

ω	$\kappa^z(\omega)$	ω	$\kappa^z(\omega)$
pbf	2	$\overline{p}bf$	0
$pb\overline{f}$	1	$\overline{p}b\overline{f}$	1
$p\overline{b}f$	2	$\overline{p}\overline{b}f$	0
$p\overline{b}\overline{f}$	2	$\left \ \overline{p}\overline{b} \ \overline{f} \right $	0

 $pb \sim \frac{z}{\Lambda} \overline{f}$

	73 / 148			74 / 148
Formal models of commonsense reasoning	System Z	Formal models of commonsense reasoning	System Z	
System Z – example 2		System Z – example 2 (cont'	d)	

$\Delta = \{r_1 : (f|b), r_2 : (b|p), r_3 : (\overline{f}|p), r_4 : (w|b), r_5 : (a|f)\}$ Partitioning:

 $\Delta_0 = \{r_1, r_4, r_5\}$ $\Delta_1 = \{r_2, r_3\},\$

therefore

$$Z(r_1) = Z(r_4) = Z(r_5) = 0,$$

 $Z(r_2) = Z(r_3) = 1.$

ω	$\kappa^z(\omega)$	ω	$\kappa^z(\omega)$	ω	$\kappa^{z}(\omega)$	ω	$\kappa^z(\omega)$
pbfwa	2	$pbfw\overline{a}$	2	$pbf\overline{w}a$	2	$pbf\overline{w}\overline{a}$	2
$pb\overline{f}wa$	1	$pb\overline{f}w\overline{a}$	1	$pb\overline{f}\overline{w}a$	1	$pb\overline{f}\overline{w}\overline{a}$	1
$p\overline{b}fwa$	2	$p\overline{b}fw\overline{a}$	2	$p\overline{b}f\overline{w}a$	2	$p\overline{b}f\overline{w}\overline{a}$	2
$p\overline{b}\overline{f}wa$	2	$p\overline{b}\overline{f}w\overline{a}$	2	$p\overline{b}\overline{f}\overline{w}a$	2	$p\overline{b}\overline{f}\overline{w}\overline{a}$	2
$\overline{p}bfwa$	0	$\overline{p}bfw\overline{a}$	1	$\overline{p}bf\overline{w}a$	1	$\overline{p}bf\overline{w}\overline{a}$	1
$\overline{p}b\overline{f}wa$	1	$\overline{p}b\overline{f}w\overline{a}$	1	$\overline{p}b\overline{f}\overline{w}a$	1	$\overline{p}b\overline{f}\overline{w}\overline{a}$	1
$\overline{p}\overline{b}fwa$	0	$\overline{p}\overline{b}fw\overline{a}$	1	$\overline{p}\overline{b}f\overline{w}a$	0	$\overline{p}\overline{b}f\overline{w}\overline{a}$	1
$\overline{p}\overline{b}\overline{f}wa$	0	$\overline{p}\overline{b}\overline{f}w\overline{a}$	0	$\overline{p}\overline{b}\overline{f}\overline{w}a$	0	$\overline{p}\overline{b}\overline{f}\overline{w}\overline{a}$	0

 $b \sim \sum_{A}^{z} a$ because $\kappa^{z}(ba) = 0 < 1 = \kappa^{z}(b\overline{a}).$

Drowning problem for system Z (cont'd)

Drowning problem for system Z

Δ :	r_1 : $(f b)$	Birds fly
	r_2 : $(b p)$	Penguins are birds
	r_3 : $(\overline{f} p)$	Penguins don't fly
	r_4 : $(w b)$	Birds have wings

Do penguins (as non-typical birds) wings?

Z-partitioning:

$$\Delta_0 = \{r_1, r_4\}, \ \Delta_1 = \{r_2, r_3\};$$

yielding the system-Z representation κ_z :

ω	r_i fals.	$\kappa_z(\omega)$	ω	r_i fals.	$\kappa_z(\omega)$
pbfw	r_3	2	$\overline{p}bfw$	_	0
$pbf\overline{w}$	r_3, r_4	2	$\overline{p}bf\overline{w}$	r_4	1
$pb\overline{f}w$	r_1	1	$\overline{p}b\overline{f}w$	r_1	1
$pb\overline{f}\overline{w}$	r_1, r_4	1	$\overline{p}b\overline{f}\overline{w}$	r_1, r_4	1
$p\overline{b}fw$	r_2, r_3	2	$\overline{p}\overline{b}fw$	_	0
$p\overline{b}f\overline{w}$	r_2, r_3	2	$\overline{p}\overline{b}f\overline{w}$	_	0
$p\overline{b}\overline{f}w$	r_2	2	$\overline{p}\overline{b}\overline{f}w$	_	0
$p\overline{b}\overline{f}\overline{w}$	r_2	2	$\overline{p}\overline{b}\overline{f}\overline{w}$	_	0

 $\kappa_z(pw) = 1 = \kappa_z(p\overline{w})$ – we cannot decide if penguins have wings or not

 \rightarrow Drowning problem: In $pb\overline{f}\overline{w}$, two conditionals with the same Z-rank are falsified, hence one of them "drowns".

77 / 148 78 / 148 Formal models of commonsense reasoning C-representations C-representations and the Drowning problem

Considering again:

Δ :	r_1 : $(f b)$	Birds fly
	r_2 : $(b p)$	Penguins are birds
	r_3 : $(\overline{f} p)$	Penguins don't fly
	r_4 : $(w b)$	Birds have wings

Compute (pareto-)minimal parameters κ_i^- for each conditional:

$$\kappa_1^- = \kappa_4^- = 1, \ \kappa_2^- = \kappa_3^- = 2;$$

minimal c-representation κ_{Δ} :

Formal models of commonsense reasoning C-representations

C-representations [Kern-Isberner 2001]

An alternative to system Z:
$$\Delta = \{(B_1|A_1), \dots, (B_n|A_n)\}$$

c-representation of Δ is defined by

$$\kappa_{\Delta}(\omega) = \sum_{\omega \models A_i \overline{B_i}} \kappa_i^-$$

with parameters $\kappa_1^-,\ldots,\kappa_n^-\in\mathbb{N}_0$ chosen such that

$$\kappa_{\Delta} \models (B_j | A_j), 1 \leqslant j \leqslant n$$

holds, i.e.,

$$\kappa_j^- > \min_{\omega \models A_j B_j} \sum_{\substack{i \neq j \\ \omega \models A_i \overline{B_i}}} \kappa_i^- - \min_{\omega \models A_j \overline{B_j}} \sum_{\substack{i \neq j \\ \omega \models A_i \overline{B_i}}} \kappa_i^-$$

C-representations and the Drowning problem (cont'd)

ω	r_i fals.	$\kappa_{\Delta}(\omega)$	ω	r_i fals.	$\kappa_{\Delta}(\omega)$
pbfw	r_3	2	$\overline{p}bfw$	_	0
$pbf\overline{w}$	r_3, r_4	3	$\overline{p}bf\overline{w}$	r_4	1
$pb\overline{f}w$	r_1	1	$\overline{p}b\overline{f}w$	r_1	1
$pb\overline{f}\overline{w}$	r_{1}, r_{4}	2	$\overline{p}b\overline{f}\overline{w}$	r_{1}, r_{4}	2
$p\overline{b}fw$	r_2, r_3	4	$\overline{p}\overline{b}fw$	_	0
$p\overline{b}f\overline{w}$	r_2, r_3	4	$\overline{p}\overline{b}f\overline{w}$	_	0
$p\overline{b}\overline{f}w$	r_2	2	$\overline{p}\overline{b}\overline{f}w$	_	0
$p\overline{b}\overline{f}\overline{w}$	r_2	2	$\overline{p}\overline{b}\overline{f}\overline{w}$	_	0

Here we have $\kappa_{\Delta}(pw) = 1 < 2 = \kappa_{\Delta}(p\overline{w})$ – hence we can infer that penguins have wings.

Formal models of commonsense reasoning	OCF and Suppression effect

System Z vs. c-representations

ω	elo	$el\overline{o}$	$e\overline{l}o$	$e\overline{l}\overline{o}$	$\overline{e}lo$	$\overline{e}l\overline{o}$	$\overline{e}\overline{l}o$	$\overline{e}\overline{l}\overline{o}$
$\kappa_1^Z(\omega)$	0	0	1	1	1	1	1	1
$\kappa_1^c(\omega)$	0	1	1	1	1	1	2	1
$\kappa_2^Z(\omega)$	0	1	1	1	1	1	1	1
$\kappa_2^c(\omega)$	0	1	2	1	1	2	1	1

OCF inference and Suppression effect

Coming back to the Suppression effect:

$$KB_1 = \{\delta_1 : (l|e), \delta_2 : (l|o), \delta_3 : (e|\top)\}$$

$$KB_2 = \{\delta_1 : (l|e), \delta_4 : (o|l), \delta_3 : (e|\top)\}$$

 $\Delta_0 = KB_i$ in each case, so $Bel(\kappa_1^z) = Cn(el)$ and $Bel(\kappa_2^z) = Cn(elo)$, hence l is believed in both cases and therefore, no suppression effect occurs with system Z.

C-representations behave very similar as system Z in this example and don't show the suppression effect either.

Mimicking weak completion semantics

In the modelling by logic programs, a strong connection is established between l and both o and e.

So, if we encode this in the knowledge base

$$\Delta_3 = \{ (l|eo), (e|\top) \},\$$

then we find both for system \boldsymbol{Z} and c-representations that

 $Bel(\kappa_3^z) = Bel(\kappa_3^c) = Cn(elo \lor e\bar{l}\bar{o}),$

which means that l is no longer believed!

Occurrence of the suppression effect depends more on the modelling than on the chosen method!

Talk Overview

- 1 How human reasoning deviates from classical logic
- 2 Cognitive perspective
- 3 Formal models of commonsense reasoning
- 4 Cognitive aspects of Cognitive Logics
- 5 From nonmonotonic reasoning to belief revision

Cognitive aspects of Cognitive Logics

- 6 Probabilistic belief revision
- References

What does a cognitive model?

• Reconstructive and generative models (Lüer & Spada, 1990):

- Reconstructive: Conceptualising structures and processes that underly mental activity
- Generative: The execution of a model not only describes psychological phenomena but also generates them
 - \Rightarrow Compare model predictions with empirical data

Section 4

Cognitive aspects of Cognitive Logics

Cognitive aspects of Cognitive Logics

How can we evaluate cognitive theories?

Simon and Wallach (1999) require a generative theories to have:

- Product correspondence: this requires that the cognitive model shows a similar overall performance as human data
- Correspondence of intermediate steps: this requires that assumed processes and steps in the model parallels separable stages in human processing
- Error correspondence: this requires that the same error patterns in the model emerge than in experimental data
- Correspondence of context dependency: this is a comparable sensitivity to known external influences

85 / 148

Requirements of cognitively-adequate logics

What phases of cognitive modeling exist?

- Explainability
- Prediction of intermediate steps
- Reverse engineering
- Implementability
- Product correspondence, i.e., same inferences
- Embedding "fallacies" in a logical context
- Alignment of cognitive and logical theories

Four phases can be considered (e.g., Lewandowski & Farrell, 2011):

1. Task analysis:

- What knowledge is needed to solve a task?
- What are processes involved in generating the knowledge to solve a task
- What are relevant structures an architecture used to specify a model?

2. Empirical data

- Reconstruction of trace/statistical measure for one participant
- Reconstruction of some statistical measure which considers all participants

 89/148
 90/148

 Cognitive aspects of Cognitive Logics
 Cognitive aspects of Cognitive Logics

 What phases of cognitive modeling exist?
 Syllogistic Reasoning: Aggegate Data

3. Model implementation

- Architecture selection (e.g. Neural Network, MPT, Logic)
- Process specification
- Parameter estimation (e.g. simulated annealing, maximum likelihood estimation)
- 4. Model validation
 - Parameter uncertainty
 - Model comparison
 - Model interpretation
- \Rightarrow Mental representation (\rightarrow conditionals) and the inference mechanism are core issues

- Existing cognitive theories do reach a high predictive power for aggregate data, i.e., predicting distribution of answers
- But, if we want to have an Al assistant that can adapt to our reasoning capabilities, does modeling 'group answers' really helps us?

- Model receives general training problems
- Framework presents task
- Model generates predictions
- Prediction compared with true response
- Model adapts to the human response
- Framework presents next task

Cognitive aspects of Cognitive Logics

Predict the Individual Reasoner: Propositional

Predict the Individual Reasoner

From a conditional statement "If A then B",

Modus ponens and Modus tollens are logically valid inference rules:

- (MP) From A, infer B
- (MT) From $\neg B$, infer $\neg A$

However, people also use other inference rules in commonsense reasoning:

- (AC) Affirmation of the Consequent: From B, infer A
- (DA) Denial of the Antecedent: From $\neg A$, infer $\neg B$

93 / 148

Logical invalidity in the Suppression Task

In the Suppression Task [Byrne 1989], participants had to draw inferences with respect to the arguments

Suppression Task

"If Lisa has an essay to write, she will study late in the library." "If the library stays open, she will study late in the library."

in the library stays open, she will study late in the lib

"Lisa has an essay to write."

Here, the majority of the participants (students without tuition in logic)

- did not apply MP (38%) nor MT (33%),
- but did apply AC (63%) and DA (54%).

Applying AC and DA is usually deemed to be irrational, i.e., rationality is usually assessed according to classical logic.

97 / 148

Cognitive aspects of Cognitive Logics ... and how to escape from irrationality

Inference patterns – examples

- Suppression Task: (MP (38%), MT (33%), AC (63%), DA (54%)) yields the inference pattern $\rho_{B89} = (\neg MP, \neg MT, AC, DA)$.
- Counterfactuals [Thompson &Byrne 2002]: "If the car had been out of gas, then it would have stalled."

Overall inferences: (MP (78%), MT (85%), AC (41%), DA (50%)), yielding the inference pattern $\rho_{TB02} = (MP, MT, \neg AC, DA)$.

Inference patterns

However, people deviate so systematically from (MP) and (MT) and apply so frequently (AC) and (DA) that commonsense logics have to find a model for this.

[Eichhorn, Kern-Isberner & Ragni AAAI-2018]

Using a (nonmonotonic) conditional logic as normative theory to evaluate human inferences eliminates (basically) all irrationality!

Basic idea: Consider all four inference rules (MP, MT, AC, DA) together in a 4-tuple to model generic inference behaviour:

Definition

An inference pattern ϱ is a 4-tuple that for each inference rule MP, MT, AC, and DA indicates whether the rule is used (positive rule, e.g., MP) or not used (negated rule, e.g., \neg MP) in an inference scenario.

98 / 148

Cognitive aspects of Cognitive Logics ... and how to escape from irrationality

Sensitivity of inference behavior

Different wordings and slightly different information can change human inferences drastically -

- What do people understand from the reasoning task?
 → implicit assumptions, background knowledge
- Additional information may suggest implicitly exceptions, alternatives, strengthening etc
 - \rightarrow nonmonotonic reasoning
- "If ... then"-statements often are not strict
 → conditionals

Inference patterns \rightarrow plausibility constraints

\rightarrow Basics of nonmonotonic logics

Remember the basics of nonomotonic logics and plausibility:

Total preorders \preccurlyeq on possible worlds expressing plausibility are of crucial importance both for nonmonotonic reasoning and conditionals:

$\omega_1 \preccurlyeq \omega_2$	ω_1 is deemed at least as plausible as ω_2
$A \preccurlyeq B$	iff minimal models of A
	are at least as plausible as all models of B
$A \sim B$	iff $AB \prec A\overline{B}$ – in the context of A ,
	B is more plausible than \overline{B}
Ψ	epistemic state equipped with a total preorder \preccurlyeq_{Ψ}
$\mathit{Bel}\left(\Psi ight)$	$=Th(\min(\preccurlyeq_\Psi))$ most plausible beliefs in Ψ

Rule	Inference	Plaus. constraint
MP MT AC DA	$ \begin{array}{c} A \ \succ B \\ \overline{B} \ \succ \overline{A} \\ B \ \succ A \\ \overline{A} \ \sim \overline{B} \end{array} $	$ \begin{array}{c} A B \prec A \overline{B} \\ \overline{A} \overline{B} \prec A \overline{B} \\ AB \prec \overline{A} B \\ \overline{A} \overline{B} \prec \overline{A} B \end{array} $

Negated inference rules (e.g., $\neg MP$) are implemented simply by negating the constraint (e.g., $A\overline{B} \preccurlyeq AB$).

		101 / 148		
Cognitive aspects of Cognitive Logics	Novel definition of rationality		Cognitive aspects of Cognitive Logics	Novel definition of rationality

Rationality in terms of nonmonotonic logics

reasoning pattern $\rho \longrightarrow$ set of plausibility constraints $\mathcal{C}(\rho)$

 $\mathcal{C}(\rho)$ is satisfiable iff there is a plausibility relation \preceq on possible worlds that satisfies all constraints in $C(\rho)$

- An inference pattern $\rho \in \mathcal{R}$ is called rational iff there is a plausibility relation \prec that satisfies $\mathcal{C}(\rho)$.
- Otherwise, the inference pattern is irrational.

In over 60 empirical studies investigated so far, hardly any irrational patterns could be found (less than 2%).

Only 2 out of 16 patterns are irrational.

Empirical study – overview

22 studies with 35 experiments [Spiegel TU Dortmund 2018] -

Only six inference patterns were ever drawn at a frequency of more than 5%. The proportion of irrational patterns is only 1.1%.

Most frequent inference patterns:

(MP, MT, AC, DA)	perc.	meaning
ТТТТ	33.9	"credulous reasoner"
TTFF	23.6	"the logical reasoner"
TTTF	12.1	"partly logical reasoner"
TFTF	9.2	"reasoner rejecting negations"
TFTT	5.7	"bold reasoner" (all but MT)
TFFF	5.7	"basic reasoner (only MP)

(For more on this: see our talk on Thursday morning)

Cognitive aspects of Cognitive Logics Implicit assumptions and background knowledge

Example counterfactuals (cont'd)

Constraints for the inference pattern $\rho_{TB02} = (MP, MT, \neg AC, DA)$:

$$\{AB \prec A\overline{B}, \overline{A}\overline{B} \prec A\overline{B}, \overline{A}B \preccurlyeq AB, \overline{A}\overline{B} \prec \overline{A}B \}$$
$$\equiv \overline{A}\overline{B} \prec \overline{A}B \preccurlyeq AB \prec A\overline{B}$$

In this example, $Bel(\rho_{TB02}) = Cn(\overline{A} \overline{B})$.

 \rightarrow Finding: In the counterfactual case, people believe not only that the antecedent is false³, but also that the consequent is false!

Background knowledge

Using c-representations and their parameters κ_i^- , we can further elaborate on the background knowledge that people (may) have used for reasoning:

With the algorithm Explanation generator [Eichhorn, Kern-Isberner, Ragni 2018] we're able to extract basic conditionals from inference patterns according to the following schema:

Rule	Conditional	Rule	Conditional
MP	(B A)	$\neg MP$	$(\overline{B} A)$
\mathbf{MT}	$(\overline{A} \overline{B})$	$\neg MT$	$(A \overline{B})$
AC	(A B)	$\neg AC$	$(\overline{A} B)$
DA	$(\overline{B} \overline{A})$	$\neg DA$	$(\! B \overline{A})\! $

Strong and weak conditionals for the inference rules

Preliminary summary

Logics based on conditionals and rankings/total preorders can provide/ensure

- Explainability √
- Reverse engineering of human inferences \checkmark
- Implementability \checkmark
- Product correspondence, i.e., same inferences \checkmark
- Embedding "fallacies" in a logical context \checkmark
- Future work: Alignment of cognitive and logical theories
- Future work: system 1 and system 2 prediction of intermediate steps

³This is usually assumed in the counterfactual case

Cognitive aspects of Cognitive Logics Implicit assumptions and background knowledge

Background knowledge in the Suppression task

Here we have the inference pattern

 $\rho_{B89} = (\neg MP, \neg MT, AC, DA).$

Explanation generator \rightarrow two KBs can explain the inference pattern:

• $KB_{B89} = \{(e|l)\}$

"If Lisa is in the library, then she (usually) has an essay to write"

• $KB'_{B89} = \{(\bar{l}|\bar{e})\}$

"If Lisa does not have an essay to write, then she (usually) is not in the library"

This also explains the rationality of the inference pattern:

Participants might have understood the given conditional information in its inverse form, and hence applied AC and DA which, in fact, amount to MP and MT for the inverse conditional.

Talk Overview

- 2 Cognitive perspective
- Formal models of commonsense reasoning
- 4 Cognitive aspects of Cognitive Logics
- 5 From nonmonotonic reasoning to belief revision
- 6 Probabilistic belief revision
- References

From nonmonotonic reasoning to belief revision Belief revision theory

$\mathsf{NMR}\xspace$ and $\mathsf{BR}\xspace$

Basically, belief revision deals with the problem of revising a (set or state) of beliefs K by new information A by applying a change operator *, obtaining a new (set or state) of beliefs K':

$$K' = K * A$$

Belief revision is nonmonotonic:

- We can have $K_1 \subseteq K_2$ but $K_1 * A \not\subseteq K_2 * A$;
- We can have $Cn(A) \subseteq Cn(B)$ but $K * A \not\subseteq K * B$.

Linking BR and NMR (and conditionals) via the Ramsey test

 $B \in K * A$ iff $A \models_{(K)} B$ iff $\Psi_K \models (B|A)$

Section 5 From nonmonotonic reasoning to belief revision

109 / 148 From nonmonotonic reasoning to belief revision Belief revision theory The core ideas of AGM theory

The AGM postulates are recommendations for rational belief change:

- The beliefs of the agent should be deductively closed, i.e., the agent should apply logical reasoning whenever possible.
- The change operation should be successfull. (This does not mean that the agent should believe everything!)
- In case of consistency, belief change should be performed via expansion.
- The result of belief change should only depend upon the semantical content of the new information.
- and more . . .

Theorem

A revision operator * satisfies the basic axioms of AGM belief revision iff there is a total preorder \leq_K (based on K) on the set of possible worlds such that

 $Mod(K * A) = \min(Mod(A), \leq_K),$

i.e.,

 $K * A = Th(\min(Mod(A), \leq_K))$

Ranking functions κ can also be conveniently used to implement such total preoders \leq_K with $Bel(\kappa) = K$.

113 / 148

From nonmonotonic reasoning to belief revision AGM theory and beyond

Advanced belief revision for ranking functions

Belief revision task for OCF

Given a prior OCF κ and some new information consisting of a set of conditionals $\Delta = \{(B_1|A_1), \dots, (B_n|A_n), \text{ find a}\}$

posterior OCF $\kappa^* = \kappa * \Delta$

such that $\kappa^* \models \Delta$ and the revision complies with the core ideas of AGM.

This task involves

- \bullet iterated revision, since an epistemic state κ is changed;
- conditional revision, since the prior is revised by conditional information;
- multiple revision, since Δ can be a set of plausible propositions by setting $A\equiv (A|\top).$

Problems with AGM

- Narrow logical framework: Classical propositional logic, no room for uncertainty
 - \rightarrow Richer epistemic frameworks?
- One-step revision: AGM belief revision does not consider changes of epistemic states (i.e., total preorders) nor revision strategies
 → Iterated revision
- New information: Only one proposition what about sets of propositions, conditional statements, sets of conditionals?
 - \rightarrow Conditional and multiple belief revision

114 / 148

From nonmonotonic reasoning to belief revision PCP for OCF

A principle of conditional preservation for ranking functions

OCF principle of conditional preservation (OCF-PCP)

Let $\Omega = \{\omega_1, \ldots, \omega_m\}$ and $\Omega' = \{\omega'_1, \ldots, \omega'_m\}$ be two sets of possible worlds (not necessarily different).

If for each conditional $(B_i|A_i)$ in Δ , Ω and Ω' behave the same, i.e., they show the same number of verifications resp. falsifications, then prior κ and posterior κ^* are balanced by

$$(\kappa(\omega_1) + \ldots + \kappa(\omega_m)) - (\kappa(\omega'_1) + \ldots + \kappa(\omega'_m))$$

= $(\kappa^*(\omega_1) + \ldots + \kappa^*(\omega_m)) - (\kappa^*(\omega'_1) + \ldots + \kappa^*(\omega'_m))$

[Kern-Isberner 2001]

If Ω and Ω' behave the same with respect to Δ , then their differences are the same in prior and posterior OCF.

From nonmonotonic reasoning to belief revision PCP for OCF

A simple principle of conditional preservation

The general principle of conditional preservation yields a simple, straightforward consequence:

Simple PCP

(SCondPres) If two possible worlds $\omega_1, \omega_2 \in \Omega$ verify resp. falsify exactly the same conditionals in Δ , then $\kappa^*(\omega_1) - \kappa(\omega_1) = \kappa^*(\omega_2) - \kappa(\omega_2).$

(SCondPres) claims that the amount of change between prior and posterior epistemic state depends only on the conditionals in the new information set, more precisely, on the so-called conditional structure of the respective world.

117 / 148

From nonmonotonic reasoning to belief revision From c-revisions to c-representations

Revision techniques for inductive reasoning

Nonmonotonic inductive reasoning based on belief revision techniques is possible by taking a uniform epistemic state $\Psi_u(=\kappa_u)^4$ as prior epistemic state:

Let $\Delta = \{(B_1|A_1), \ldots, (B_n|A_n)\}$ be a finite set of conditionals;

 $\kappa_u * \Delta$

allows model-based inductive inference.

C-representations of $\Delta\equiv$ c-revisions of κ_u by Δ

- improving system Z [Pearl 1990]
- generalizing system Z^* [Goldszmidt, Morris & Pearl 1993])

This allows for a seamless integration of reasoning and revision.

 ${}^{4}\kappa_{u}(\omega) = 0$ for all $\omega \in \Omega$

C-revisions

... are revisions that satisfy the principle of conditional preservation.

New information $\Delta = \{(B_1|A_1), \ldots, (B_n|A_n)\}$

OCF c-revision

$$\kappa^* = \kappa * \Delta : \kappa^*(\omega) = \kappa_0 + \kappa(\omega) + \sum_{\substack{1 \le i \le n \\ \omega \models A_i \overline{B_i}}} \kappa_i$$

 κ_i^- 's have to be chosen appropriately to ensure $\kappa^* \models \mathcal{R}$ (Success).

 κ_i^- is the impact that conditional $(B_i|A_i)$ has in the change process. (Success) is satisfied iff for all $i, 1 \leq i \leq n$,

$$\kappa_i^- > \min_{\omega \models A_i B_i} (\kappa(\omega) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) - \min_{\omega \models A_i \overline{B}_i} (\kappa(\omega) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-) + \sum_{\substack{j \neq i \\ \omega \models A_j \overline{B}_j}} \kappa_j^-$$

Example - c-representations and c-revisions

118 / 148

Extended example – birds' scenario

From nonmonotonic reasoning to belief revision

p - penguins w - winged animal k - kiwis d - doves.	
Δ r_1 : $(f b)$ birds fly	
$r_2: \ (b p)$ penguins are birds	
$r_3:~(\overline{f} p)$ penguins do not fly	
$r_4: (w b)$ birds have wings	
r_5 : $(b k)$ kiwis are birds	
$r_6:~(b d)$ doves are birds	

Strict knowledge: Penguins, kiwis, and doves are pairwise exclusive.

Birds' scenario (cont'd)

Let * be a c-revision for OCF. Initial epistemic state:

 $\kappa = \kappa_u * \Delta$,

where κ_u is the uniform ranking function. Here we have:

Initial state obtained via $\kappa_ust\Delta$

 $\kappa_u * \Delta \models (\overline{f}|p), (w|p), (w|d), (w|k), (f|d), (f|k)$

Penguin-birds do not fly, but all birds – penguins, kiwis, and doves – inherit the property of having wings from their superclass *birds*; kiwis and doves are supposed to fly.

(Note that exactly the same beliefs hold for kiwis and doves!)

Birds' scenario (cont'd)

• Revision: Now, the agent gets to know that having wings is false for kiwis - kiwis do not possess wings:

 $\kappa_1^* = \kappa_u * (\Delta \cup \{(\overline{w}|k)\})$

 $\kappa_1^* \models (b|k), (f|k)$ – kiwis are birds, kiwis fly.

• Update: The agent learns from the news, that, due to some mysterious illness that has occurred recently among doves, the wings of newborn doves are nearly completely mutilated:

 $\kappa_2^* = \kappa * \{ (\overline{w}|d) \} = (\kappa_u * \Delta) * \{ (\overline{w}|d) \}$

 $\kappa_2^* \not\models (b|d), (f|d)$ – now it is unknown whether doves are birds or fly

200 years before AGM

The general task of belief change

Considering the task of belief change is not new: About 200 years before AGM theory, Bayes came up with his famous rule in probabilistics:

$$P(B|A) = \frac{P(A \land B)}{P(A)}.$$

Actually, Bayesian conditioning fulfills the core ideas of AGM theory, but obviously, the contexts of the theories (changing a code of law for AGM vs. random experiments and chances - e.g., in gambling - for Bayes) seemed to be too diverse to realise a strong connection.

However, from a formal resp. epistemic point of view, the tasks are similar if not identical:

General task of belief change

Given some (prior) epistemic state Ψ and some new information I, change beliefs rationally by applying a change operator * to obtain a (posterior) epistemic state Ψ' :

 $\Psi * I = \Psi'$

$AGM \ : \ \Psi = K$	set of propositional beliefs
$Bayes: \Psi = P$	probability distribution
both : $I = A$	propositional belief

Probabilistic belief revision Probabilistic conditional revision	Probabilistic belief revision The role of conditional preserv	ation
An advanced probabilistic belief change task	The big conditional picture	
The agent wants to adapt her probabilistic belief state P to a set of new		

125 / 148

conditional beliefs $\mathcal{R} = \{(B_1 A_1)[x_1], \dots, (B_1 A_1)[x_1]\}$ – what is
$P * \{(B_1 A_1)[x_1], \dots, (B_1 A_1)[x_1]\}$? ⁵
Use cross-entropy = information distance (= Kullback-Leibler-divergence)
$R(Q,P) = \sum_{\omega \in \Omega} Q(\omega) \log \frac{Q(\omega)}{P(\omega)}$

ME belief change

Given some prior P and some new \mathcal{R} , choose the unique distribution $P^* = P *_{ME} \mathcal{R} = \arg \min_{Q \models \mathcal{R}} R(Q, P)$ that satisfies \mathcal{R} and has minimal information distance to P.

The principle of minimum cross-entropy (MinREnt) generalizes the principle of maximum entropy (MaxEnt).

Probabilities Ranking functions Principle MaxEnt c-representations \longleftrightarrow Principle MinREnt c-revisions \longleftrightarrow

Principles of conditional preservation

underlie all these reasoning mechanisms - they emerged from a probabilistic principle of conditional preservation that is one of the main guidelines for the principles of optimum entropy.

 $^{{}^{5}\}mathcal{R}$ may contain probabilistic conditionals as well as probabilistic and logical facts.

Back to commonsense reasoning ...

Jeff Paris:

Common sense and maximum entropy. Synthese 117, 75-93, 1999, Kluwer Academic Publishers

Theorem

Each (model-based) probabilistic inference process N that satisfies 7 principles of commonsense reasoning coincides with MaxEnt inference.

- \rightarrow MaxEnt reasoning
 - satisfies commonsense principles of probabilistic reasoning, and
 - is the only probabilistic inference process doing so.

129 / 148

Probabilistic belief revision MaxEnt for syllogisms

Translation of Syllogisms to Probabilistic Conditionals

(joint work with Marco Wilhelm)

Syllogism	Conditional
All A 's are B 's	(B A)[1]
No A 's are B 's	(B A)[0]
Some A 's are B 's	(B A)[0.65]
Some A 's are not B 's	(B A)[0.15]

Principle of Maximum Entropy [Paris 2006]

• A knowledge base $\mathcal{R} = \{(B_1|A_1)[p_1], \dots, (B_n|A_n)[p_n]\}$ is a set of conditional statements of the form:

"If A holds, then B follows with probability p."

• A probability distribution \mathcal{P} can be seen as a formalization of the *belief state* of a reasoner with knowledge \mathcal{R} iff

$$\mathcal{P}(B_i|A_i) = p_i \qquad \forall \ i = 1, \dots, n.$$

Definition

The maximum entropy distribution $\mathcal{P}_{\mathcal{P}}^{\mathsf{ME}}$ is the unique probability distribution

$$\mathcal{P}_{\mathcal{R}}^{\mathsf{ME}} = \arg \max_{\mathcal{P} \models \mathcal{R}} - \sum_{\omega \in \Omega} \mathcal{P}(\omega) \cdot \log_2(\mathcal{P}(\omega))$$

that satisfies $\mathcal R$ and adds as few information as possible.

130 / 148

Probabilistic belief revision MaxEnt for syllogisms

How Does the MaxEnt Model Work?

Let \mathcal{R} be a set of conditionals derived from given syllogisms.

1 Calculate the maximum entropy distribution $\mathcal{P}_{\mathcal{R}}^{\mathsf{ME}}$.

2 For every query

{All | No | Some | Some not} A's are B's?

calculate
$$p = \mathcal{P}_{\mathcal{R}}^{\mathsf{ME}}(B|A)$$
.

then *accept* the answer.

0 If no answer is accepted, return NVC. Otherwise, return any accepted answer.

Probabilistic belief revision MaxEnt for syllogisms

Performance of MaxEnt at the CogSci 2019 Challenge

- The MaxEnt model for syllogisms was evaluated on benchmark examples and proved to be comparable to best models.
- MaxEnt performs particularly well when no training data is available.
- When enough training data is available, a MaxEnt-MFA hybrid model performed best; prediction accuracy of MaxEnt MFA Hybrid: 44.03 %.

Talk Overview

1 How human reasoning deviates from classical logic

References

- 2 Cognitive perspective
- 3 Formal models of commonsense reasoning
- 4 Cognitive aspects of Cognitive Logics
- 5 From nonmonotonic reasoning to belief revision
- 6 Probabilistic belief revision
- References

[3] J. R. Cox and R. A. Griggs. The effects of experience on performance in wason's selection task. Memory & Cognition, 10(5):496–502.

References

[4] J. S. B. Evans. Toward a statistical theory of reasoning. The Quarterly Journal of Experimental Psychology, 29(4):621-635, 1977.

References: Cognitive II

 J. S. B. Evans, J. L. Barston, and P. Pollard.
 On the conflict between logic and belief in syllogistic reasoning. *Memory & cognition*, 11(3):295–306, 1983.

References

[6] A. Feeney and S. J. Handley.

The suppression of q card selections: Evidence for deductive inference in wason's selection task.

The Quarterly Journal of Experimental Psychology: Section A, 53(4):1224–1242, 2000.

References

[7] L. Fiddick, L. Cosmides, and J. Tooby.

No interpretation without representation: the role of domain-specific representations and inferences in the wason selection task.

Cognition, 77(1):1–79.

137 / 148

References: Cognitive IV

[12] K. C. Klauer, J. Musch, and B. Naumer.

On belief bias in syllogistic reasoning.

Psychological Review, 107(4):852–884, 2000.

[13] M. Oaksford and N. Chater.

A rational analysis of the selection task as optimal data selection. *Psychological Review*, 101(4):608, 1994.

[14] P. Pollard.

The effect of thematic content on the 'wason selection task'. *Current Psychological Research*, 1(1):21–29.

[15] P. Pollard.

Nonindependence of selections on the wason selection task. *Bulletin of the Psychonomic Society*, 23(4):317–320, 1985.

References: Cognitive III

[8] R. A. Griggs.

Memory cueing and instructional effects on wason's selection task. *Current Psychology*, 3(4):3–10.

- P. N. Johnson-Laird.
 How we reason.
 Oxford University Press, New York, 2006.
- P. N. Johnson-Laird and P. C. Wason.
 A theoretical analysis of insight into a reasoning task.
 Cognitive Psychology, 1(2):134–148, 1970.
- [11] K. N. Kirby.

Probabilities and utilities of fictional outcomes in wason's four-card selection task.

Cognition, 51(1):1–28, 1994.

138 / 148

References: Cognitive V

[16] M. Ragni, E.-A. Dietz, I. Kola, and S. Hölldobler.

Two-valued logic is not sufficient to model human reasoning, but three-valued logic is: A formal analysis.

References

In Bridging@ IJCAI, pages 61-73, 2016.

- M. Ragni, I. Kola, and P. Johnson-Laird.
 On selecting evidence to test hypotheses: A theory of selection tasks. *Psychological Bulletin*, 144(8):779–796, 2018.
- [18] K. Stenning and M. Van Lambalgen. Human reasoning and cognitive science. MIT Press, 2008.

References: Cognitive VI

References: Cognitive VII

[19] D. Trippas, D. Kellen, H. Singmann, G. Pennycook, D. J. Koehler, J. A. Fugelsang, and C. Dubé.

References

Characterizing belief bias in syllogistic reasoning: A hierarchical bayesian meta-analysis of roc data.

Psychonomic bulletin & review, 25(6):2141-2174, 2018.

[20] A. Tversky and D. Kahneman.

 $\label{eq:Extensional Versus Intuitive Reasoning: The Conjunction Fallacy in Probability Judgment.$

Psychological Review, 90(4):293-315, 1983.

[21] P. Wason.

Reasoning about a rule.

Quarterly Journal of Experimental Psychology, 20(3):273–281, 1968.

[22] S. A. Yachanin.

Facilitation in wason's selection task: Content and instructions. *Current Psychology*, 5(1):20–29.

[23] S. A. Yachanin and R. D. Tweney.

The effect of thematic content on cognitive strategies in the four-card selection task.

Bulletin of the Psychonomic Society, 19(2):87–90, 2013.

		141 / 148		142 / 148
	References			References
Referer	nces: Formal I		Referer	nces: Formal II
[Ada75] [Ant97]	 E.W. Adams. The Logic of Conditionals. D. Reidel, Dordrecht, 1975. G. Antoniou. Nonmonotonic reasoning. 		[EKIR18] [Gär92]	 Christian Eichhorn, Gabriele Kern-Isberner, and Marco Ragni. Rational inference patterns based on conditional logic. In S.A. McIlraith and K.Q. Weinberger, editors, <i>Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18)</i>. AAAI Press, 2018. P. Gärdenfors.
[DHR12]	 MIT Press, Cambridge, Mass., 1997. E. Dietz, S. Hölldobler, and M. Ragni. A Computational Approach to the Suppression Task. In N. Miyake, D. Peebles, and R.P. Cooper, editors, <i>Proc. of the Annual Conference of the Cognitive Science Society</i>, pages 1500–Austin, TX, 2012. Cognitive Science Society. 	<i>34th</i> 1505,	[GMP93]	 Belief revision and nonmonotonic logic: Two sides of the same coin? In Proceedings European Conference on Artificial Intelligence, ECAI'92, pages 768–773. Pitman Publishing, 1992. M. Goldszmidt, P. Morris, and J. Pearl. A maximum entropy approach to nonmonotonic reasoning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(3):220–232, 1993.

References: Formal III

[GP96] M. Goldszmidt and J. Pearl.

 $\label{eq:Qualitative probabilities for default reasoning, belief revision, and causal modeling.$

Artificial Intelligence, 84:57–112, 1996.

[HK09] S. Hölldobler and C. D. Kencana Ramli.

Logic programs under three-valued Łukasiewicz semantics.

References

In P. M. Hill and D. S. Warren, editors, *Logic Programming, 25th International Conference, ICLP 2009*, volume 5649 of *LNCS*, pages 464–478, Heidelberg, 2009. Springer.

[KI98] G. Kern-Isberner.

Characterizing the principle of minimum cross-entropy within a conditional-logical framework.

Artificial Intelligence, 98:169–208, 1998.

References

145 / 148

References: Formal V

[Par99] Jeff Paris.

Common sense and maximum entropy. *Synthese*, 117:75–93, 1999.

[Pea90] J. Pearl.

System Z: A natural ordering of defaults with tractable applications to nonmonotonic reasoning.

In R. Parikh, editor, *Proc. of the 3rd conference on Theoretical aspects of reasoning about knowledge (TARK1990)*, pages 121–135, San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

[Rei80] R. Reiter.

A logic for default reasoning.

Artificial Intelligence, 13:81–132, 1980.

References: Formal IV

[KI01]	G. Kern-Isberner. Conditionals in Nonmonotonic Reasoning and Belief Revision. Number 2087 in LNCS. Springer, Berlin, DE, 2001.			
[KI04]	 G. Kern-Isberner. A thorough axiomatization of a principle of conditional preservation in belief revision. Annals of Mathematics and Artificial Intelligence, 40:127–164, 2004. 			
[Mak89]	 D. Makinson. General theory of cumulative inference. In M. Reinfrank et al., editors, <i>Non-monotonic Reasoning</i>, pages 1–18. Springer Lecture Notes on Artificial Intelligence 346, Berlin, 1989. 			
	146 / 148			
	References			
References: Formal VI				
[REKI16]	Marco Ragni, Christian Eichhorn, and Gabriele Kern-Isberner.			

Simulating human inferences in the light of new information: a formal analysis.

In S. Kambhampati, editor, *Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI 2016*, pages 2604–2610, Palo Alto, CA, USA, 2016. AAAI Press.

[Spo12] W. Spohn.

The Laws of Belief: Ranking Theory and Its Philosophical Applications. Oxford University Press, Oxford, UK, 2012.